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1 Abstract 24 

Purpose: The pathomorphology of Legg-Calvé-Perthes Disease (LCPD) is a key contributor to poor long-term 25 

outcomes such as hip pain, femoroacetabular impingement, and early-onset osteoarthritis. Plain radiographs, 26 

commonly used for research and in the clinic, cannot accurately represent the full extent of LCPD deformity. The 27 

purpose of this study was to develop and evaluate a methodological framework for three-dimensional (3D) statistical 28 

shape modeling (SSM) of the proximal femur in LCPD.  29 

Methods: We developed a framework consisting of three core steps: segmentation, surface mesh preparation, and 30 

particle-based correspondence. The framework aims to address challenges in modeling this rare condition, 31 

characterized by highly heterogeneous deformities across a wide age range and small sample sizes. We evaluated 32 

this framework by producing a SSM from clinical magnetic resonance images of 13 proximal femurs with LCPD 33 

deformity from 11 patients between the ages of six and 12 years.  34 

Results: After removing differences in scale and pose, the dominant shape modes described morphological features 35 

characteristic of LCPD, including a broad and flat femoral head, high-riding greater trochanter, and reduced neck-36 

shaft angle. The first four shape modes were chosen for evaluation of the model’s performance, together describing 37 

87.5% of the overall cohort variance. The SSM was generalizable to unfamiliar examples with an average point-to-38 

point reconstruction error below 1mm. We observed strong Spearman rank correlations (up to 0.79) between some 39 

shape modes, 3D measurements of femoral head asphericity, and clinical radiographic metrics.  40 

Conclusion: In this study we present a framework, based on SSM, for the objective description of LCPD deformity 41 

in three dimensions. Our methods can accurately describe overall shape variation using a small number of 42 

parameters, and are a step towards a widely accepted, objective 3D quantification of LCPD deformity.  43 

 44 

Keywords: Legg-Calvé-Perthes Disease, hip joint, pediatrics, statistical shape modeling, morphology 45 

2 Introduction 46 

Legg-Calvé-Perthes Disease (LCPD) is a pediatric hip disorder characterized by avascular necrosis of the femoral 47 

head (FH).[1] LCPD often results in a permanent residual deformity of the FH and secondary acetabular dysplasia, 48 

which can manifest in features such as an enlarged, widened and sometimes flat FH, short femoral neck, a high-49 

riding greater trochanter, acetabular dysplasia, and hip joint incongruity. Patients with severe residual FH deformity 50 

often present with hip pain, limited range of motion, and femoroacetabular impingement during adolescence.[2, 3] 51 

Hip surgery is often indicated for these patients.[4, 5] An increased severity of residual FH deformity and acetabular 52 

dysplasia at skeletal maturity (as described by the radiographic Stulberg classification[6]) is also associated with 53 

greater risk of early-onset osteoarthritis (OA), with a reported rate of moderate-to-severe radiographic OA of more 54 

than 40% in LCPD patients as young as 29 years at follow-up,[7] compared to only 2% in the 50-54 year old general 55 

population.[8]  56 

Quantifying the degree of LCPD deformity is an important part of patient assessment, treatment planning and 57 

follow-up, but there are limitations to current approaches. Radiographic metrics do not accurately depict the full 58 

extent of the pathomorphology of the deformity because they are based on planar projections of the three-59 

dimensional (3D) anatomy. These measurements are also sensitive to positioning errors between patients and 60 

examinations, including difficulty in obtaining plain radiographs of true orthogonal views due to suboptimal leg 61 

positioning that can be caused by decreased hip motion.[9, 10] Computed tomography provides 3D images of the 62 

bones, but it requires considerable exposure to ionizing radiation and does not provide good visualization of soft 63 

tissues, like articular cartilage overlying the bone. Magnetic resonance imaging (MRI) requires no ionizing radiation 64 

and yields 3D images with good soft tissue visualization, making it suitable for ongoing follow-up imaging. 65 

However, a major limitation of all 3D imaging is that there is currently no widely accepted, objective way by which 66 

to quantify the 3D deformity in LCPD.  67 

3D surface reconstructions from volumetric images have, however, been used to objectively describe anatomy and 68 

anatomical variation through statistical shape modeling (SSM).[11–13] A key advantage of SSM is that it provides a 69 

holistic representation of shape with independent continuous parameters (i.e., shape modes) without a priori 70 

assumptions regarding measurements believed to be most clinically relevant. Previous applications of SSM in the 71 

hip have included prediction of OA outcomes in older adults,[14, 15] identification of the most useful 2D clinical 72 
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measurements in cam-type femoroacetabular impingement syndrome,[16] and describing growth patterns in 73 

pediatric hip disorders.[17, 18] It follows from these examples that SSM should provide the foundation for an open 74 

and objective standard for describing 3D shape variation in LCPD. For such a foundation to be useful, it must 75 

perform well when the available datasets are small and highly heterogeneous, which is typical for studies of LCPD 76 

deformity.[19–21]  77 

The accuracy and applicability of SSM relies fundamentally on the choice of landmark correspondences, particularly 78 

in highly heterogeneous morphology such as LCPD deformity. Placing landmarks by hand is impractical for dense 79 

point sets on 3D surfaces, and many automated methods rely on either brute force (e.g. matching closest nodes on 80 

meshes) or geometric comparisons, both of which introduce suboptimal correspondences that can confound 81 

statistical analysis.[22] Recently, entropy-particle-based methods for optimization of correspondence, as used in the 82 

open-source SSM software ShapeWorks, have demonstrated excellent performance.[12, 23, 24] To facilitate 83 

improved assessment of the long-term prognosis of this relatively rare condition, the present study extends entropy-84 

particle-based SSM methods to also include an incremental optimization routine.[25] This incremental approach was 85 

designed to enable optimization of landmark correspondences when using a small, heterogenous dataset. 86 

The objectives of this study were to develop a framework for constructing expandable SSM of LCPD 87 

pathomorphology, evaluate its accuracy and sensitivity to training population size, and illustrate its use to quantify 88 

3D anatomical variation in a small cohort of LCPD patients. 89 

3 Materials and Methods 90 

The shape modeling framework presented herein consists of three key steps: segmentation, surface mesh 91 

preparation, and particle-based correspondence. We present these steps below in the context of their application to 92 

our evaluation cohort of 11 patients with LCPD, and the analyses used to evaluate the resulting SSM. 93 

3.1 Patients and Imaging 94 

Eleven patients (eight male, three female) with LCPD were included in this Institutional Review Board approved 95 
study (Table 1). Two patients had bilateral LCPD. Patient ages ranged from six to 12 years old (mean 9 ± 2 years). 96 

The modified Waldenstrom stages of LCPD progression[26] ranged from IIa (early fragmentation stage) to IV 97 

(healed stage), and the modal stages were IIIa and IIIb (early and late reossification stages), containing four 98 

proximal femurs each.  99 

 100 

Table 1: Patient demographics, natural history stage, and anatomical measurements. 101 

Subject Gender 

Age 

(yr.) Side 

Modified Elizabethtown 

stage 

Asphericity 

(mm) 

NSA 

(degrees) 

ATD 

(mm) 

1 Male 10 L IV 2.3 126 16.8 

2 Male 10 L IIIb 2.9 134 31 

3 Male 6 
L IIIb 3.6 130 19.2 

R IIIa 3.5 131 17.3 

4 Female 9 R IIIb 4.8 132 9.9 

5 Male 9 L IIIa 4.0 141 32.3 

6 Male 10 
L IIIb 5.1 140 19.1 

R IIIa 5.4 135 12 

7 Female 12 R IIb 5.6 162 43.8 

8 Male 12 R IIIa 5.8 114 0 

9 Male 11 L IIa 2.7 132 14.8 

10 Male 9 L IIb 4.2 152 25.8 

11 Female 8 R IIa 2.7 131 15.4 

Total  

[mean (SD)]: 9 (2) 
  

4.0 (1.2) 

135.4 

(11.8) 

19.8 

(11.2) 
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 102 

Abbreviations: NSA, neck-shaft angle; ATD, articular-trochanteric distance. 103 

 104 

An MRI scan of the hip joints was obtained using a GE Hdxt 1.5 Tesla scanner (Waukesha, WI, USA).[19] A fat-105 

suppressed 3D spoiled gradient-echo sequence was used to acquire images coronally (repetition time = 8.9 ms, echo 106 

time = 2.8 ms, flip angle= 10°, bandwidth = 20.8 kHz, slice thickness = 1.0 mm, matrix = 288 x 288). Each image 107 

volume was resampled based on its smallest voxel dimension (0.47 – 0.63 mm) to produce an isotropic image 108 

volume for segmentation.  109 

3.2 Framework Step 1: Segmentation 110 

From the resampled images of each patient, the affected proximal femur (or femurs for the two patients with 111 

bilateral LCPD) was segmented to include the femoral head and approximately two centimetres of the proximal 112 

femoral shaft below the tip of the lesser trochanter (Figure 1). Segmentation was performed manually by two 113 

segmentation experts (LJ and SS). An initial segmentation pass of each proximal femur, focusing on anatomical 114 

accuracy, (LJ, 3D Slicer v4.13.0, Slicer community, www.slicer.org)[27] was followed by a refinement pass to 115 

correct any errors and remove voxel-scale surface roughness (SS, Amira v6.0.1, Thermo Fisher Scientific Inc., 116 

Waltham, MA, USA). Due to the patients’ varied stages of ossification, the segmentation protocol included isolation 117 

of both bone and cartilage of the proximal femoral epiphysis and apophyses of the greater and lesser trochanters, to 118 

better reflect the full shape of the bone (Figure 1). To assess the repeatability of the segmentation protocol between 119 

raters and software packages, each rater separately completed both segmentation passes on one femur, and the 120 

Hausdorff distance was calculated between the two segmentation boundaries. 121 
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 122 

Fig. 1 Key stages of the modeling and analysis pipeline for this statistical shape model (SSM) framework, including 123 

segmentation and surface mesh preparation steps (top row, red), the particle-based correspondence step using an 124 

incremental optimization routine in ShapeWorks (middle row, blue), and analysis of anatomical variation (bottom 125 

row, green). 126 

3.3 Framework Step 2: Surface Mesh Preparation 127 

Three-dimensional surfaces of the proximal femurs were generated in Amira, using a previously published iterative 128 

smoothing and decimation protocol.[28] Due to the small size of the pediatric anatomy, meshes were scaled to three 129 

times their native resolution to reduce the effective strength of particle repulsion and improve correspondence 130 

optimization in the subsequent step. Meshes were reflected, if left-sided, and aligned via the iterative closest point 131 

algorithm using CloudCompare v2.11 (www.cloudcompare.org)[29] (Figure 1).  132 

Cutting planes were defined to constrain particle placement to consistent regions of the proximal femur. To do so, 133 

the best-fit cylinder to the femoral shaft was determined for each mesh using custom MATLAB code (MATLAB 134 

R2022a, The MathWorks Inc, Natick, Massachusetts, USA). The orientation of the long axis of the cylinder defined 135 

the normal vector of the plane (Figure 1). Next, Gaussian curvature maps were computed for each mesh using 136 

MeshLab (v2022.02, Visual Computing Lab, ISTI-CNR, Pisa, Italy), to guide the proximal/distal placement of the 137 

plane in the particle-based correspondence step.[30] 138 

3.4 Framework Step 3: Particle-based Correspondence 139 

We used ShapeWorks v6.3.0 (shapeworks.sci.utah.edu)[12] on an ASUS GL552V laptop (Intel Core i7-6700-HQ, 140 

Windows 10) to generate a particle-based correspondence model of the proximal femur. After importing the femur 141 
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surface meshes and cutting plane orientations generated in the previous steps, the proximal/distal position of the 142 

plane on each femur was standardized by using the distal part of the lesser trochanter physis when visible on MRI in 143 

conjunction with the division between the lesser trochanter and femoral shaft created by the curvature map (Figure 144 

1).  145 

We utilized a two-stage incremental optimization approach to establish particle correspondence across the femoral 146 

meshes. Incremental optimization routines begin with initially fitting a model to a subset of the most similar shapes, 147 

before incrementally adding outlier shapes. In small datasets with large shape variance, incremental optimization 148 

can achieve better particle correspondence and model compactness compared to a model optimized on the whole 149 

dataset at once.[25] In the current study the first stage involved placing correspondence particles (n=512) on a subset 150 

of five meshes using a fully automated hierarchical splitting strategy and entropy-based optimization (Figure 1).[24] 151 

Generalized Procrustes analysis removed the effect of pose and scale during optimization of particle position. The 152 

mean particle coordinates from the first stage were used to initialize particle locations on the remaining eight 153 

meshes, after which the optimization routine was rerun in order to establish correspondence on all 13 surfaces 154 

(Figure 1). 155 

Principal component analysis (PCA) was utilized to consolidate the dimensionality of the model (equal to the 156 

number of particles multiplied by the three spatial dimensions) to a set of linearly uncorrelated modes, which 157 

describe the dominant shape variations among the cohort. Patient-specific PCA component scores were used to 158 

describe the shape of each femur relative to the variation captured by each mode. Here, PCA scores can be 159 

understood as the weights for each variable when calculating the principal component. 160 

3.5 Framework Evaluation 161 

We evaluated our SSM framework performance using the three standard metrics: compactness, the proportion of 162 

total variability explained by a chosen number of modes; generalization, the ability of the model to represent shapes 163 

that were not part of the training set; and specificity, the ability of the model to generate only valid shapes and to 164 

differentiate between shapes in different categories.[31] To test our model’s sensitivity to changes in training set 165 

size, we extended the generalization calculation from a leave-one-out to a leave-N-out cross validation using custom 166 

Python code. Values of generalization were calculated for N = 1 to N = 9 (an effective training set size of 12 and 4 167 

respectively); the case for N = 1 is equivalent to the standard generalization metric.  168 

3.6 Analysis of Anatomical Variation 169 

To explore how the current SSM framework may be applied alongside alternative 2D or 3D measures of deformity, 170 

we compared the PCA component scores for each femur in our evaluation cohort with a 3D measure of femoral head 171 

asphericity and 2D measurements from each patient’s corresponding clinical radiographs. Gaussian curvature was 172 

computed for the reconstructed mean mesh in MeshLab, and used to extract the region corresponding to the femoral 173 

head in CloudCompare (Figure 1). The indices of the correspondence particles that resided within the mean femoral 174 

head region were then identified and used to calculate the best-fit sphere for each femoral head in the cohort using 175 

custom MATLAB code. Asphericity was expressed as the root-mean square error of the sphere fit (Table 1). Neck-176 

shaft angle (NSA) and articulotrochanteric distance (ATD) were measured on anterior-posterior radiographs for each 177 

patient femur (Figure 1, Table 1). Last, Spearman’s rank correlation coefficient was quantified to examine the 178 

relationship between asphericity, NSA and ATD with PCA component scores. 179 

4 Results 180 

Figure 2 shows good performance of this SSM framework when applied to the evaluation cohort. The model is 181 

compact, representing almost 90% of the total variation with just four modes (Figure 2a). The model generalizes to 182 

less than 1mm with four modes (Figure 2b), with the generalization curve flattening after the ninth mode. The 183 

model’s specificity is effectively constant (Figure 2c), with a range of 1.12-1.14mm.  184 

  185 
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a. 186 

 187 

b. 188 

 189 

c.  190 

 191 

Fig. 2 Results of SSM evaluation when up to 12 shape modes are retained, presented using the three standard 192 

evaluation metrics: a) compactness, the cumulative proportion of cohort variance explained; b) generalization, the 193 

average point-to-point error when reconstructing unfamiliar shapes (shaded area indicates ±1 standard deviation); c) 194 
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specificity, the average point-to-point difference between shapes randomly generated from the SSM and their 195 

closest training set shapes.   196 

 197 

Leave-N-out cross validation demonstrated the sensitivity of this framework to changes in the training set size when 198 

four shape modes are included (Figure 3). Increasing N from 1 to 9 (reducing the effective training set size from 12 199 

to 4 femurs) increased the mean point-to-point reconstruction error (generalization) from 0.99mm to 1.40mm. The 200 

mean Hausdorff distance between segmentations completed separately by each rater (LJ and SS) on one femur was 201 

0.38 mm (maximum 3.35 mm, 95th percentile 1.13 mm). 202 

 203 

Fig. 3 Results of leave-N-out cross-validation evaluation of framework performance, showing the impact of changes 204 

in the effective training set sample size on the mean (purple), median (dark green), 90th and 99th percentile (green 205 

and light green, respectively) point-to-point reconstruction error using four shape modes. 206 

 207 

The first four modes of variation were selected for further analysis, as these modes accounted for at least 5% of the 208 

total variation observed in the SSM. Together, these modes accounted for 87.5% of the total cohort variability, with 209 

generalization and specificity of 0.99mm and 1.12mm respectively. Mode I described the oblateness (the degree of 210 

compression of a sphere, here along the axis of the femoral neck, to form an ellipsoid) and width of the femoral head 211 

in the anterior-posterior and medial-lateral directions, vertical angle of the lateral greater trochanter, and ATD 212 

(Figure 4). Mode II described the slope of the superior femoral head, size of the femoral head and greater trochanter, 213 

ATD, NSA, prominence of the vastus ridge, and depth of the fovea (Figure 4). Mode III described the height of the 214 

femoral head and vastus ridge, shape of the intertrochanteric crest, and width of the femoral neck (Figure 4). Lastly, 215 

mode IV described anterior protrusion and asphericity of the femoral head, prominence of the posterior greater 216 

trochanter, and NSA (Figure 4). 217 
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 218 

Fig. 4 The first four principal component analysis (PCA) modes of the evaluation statistical shape model (SSM). 219 

Surface distance plots show shapes with each mode set to ±2 standard deviations (SD) from the cohort mean shape, 220 

and the deviation of each surface from the mean shape is represented by a color gradient from green (negative 221 

displacement) to magenta (positive displacement). Arrows qualitatively represent notable areas of variation captured 222 

by each mode. 223 

 224 

Shape mode scores were calculated for each femur in the evaluation cohort and compared with the corresponding 225 

femoral head asphericity, NSA, and ATD measurements for that femur (Figure 5). Correlations between shape mode 226 

scores and these parameters ranged from very weak to strong. Asphericity and NSA were most strongly correlated 227 

with mode IV (Spearman’s rank correlation coefficients of 0.79 and 0.63 respectively), whereas ATD was most 228 

strongly correlated with mode II (Spearman’s rank correlation coefficient of -0.63). Other notable correlations where 229 
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Spearman’s rank correlation coefficient was stronger than ±0.4 included NSA with Mode II (-0.43) and ATD with 230 

mode I (0.58). 231 

 232 

Fig. 5 Analysis of anatomical variation. Shape mode scores for each proximal femur in the evaluation cohort are 233 

plotted on the vertical axes (rows from top to bottom representing modes 1-4), against femoral head asphericity (left 234 

column), neck-shaft angle (NSA, middle column), and articular-trochanteric distance (ATD, right column). 235 

Spearman’s rank correlation coefficient (ρ) is shown for each relationship, and relationships stronger than ρ = ±0.4 236 

are indicated with a plot boundary and depictions of the femurs with the highest and lowest horizontal axis values. 237 
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5 Discussion 238 

In this study, we developed and implemented a new methodological framework for constructing SSM of highly 239 

heterogeneous LCPD anatomy, based on progressive optimization of particle correspondences. We evaluated this 240 

framework by producing a 3D SSM of proximal femurs from clinical MR images of patients in stage IIa-IV LCPD, 241 

which provided a compact, accurate, and objective description of 3D shape and shape variation in LCPD. The first 242 

four PCA components of this model met our threshold for inclusion (>5% of overall cohort variance); these modes 243 

described morphological changes characteristic of LCPD consistent with clinical observation such as an enlarged 244 

and widened FH and a high-riding greater trochanter. Quantitative associations between PCA component scores and 245 

radiographic measurements demonstrated how to interpret SSM-based findings relative to clinical radiographic 246 

measurements of LCPD that are more familiar to clinicians than SSM-based measurements.  247 

The contribution of this work is a framework, which includes protocols for image volume segmentation, surface 248 

mesh preparation, and generation of a particle-based correspondence model. The main steps of the current 249 

framework are derived from existing protocols,[13, 28] with the key innovation of incremental optimization of 250 

particle correspondences.[25] As well as improving performance in small and heterogeneous datasets, incremental 251 

optimization also enables incremental expansion of the model using data from multiple sources. Open science 252 

practices are a powerful tool to facilitate research into rare conditions such as LCPD, and every step in the 253 

framework can be carried out using free and open source software (including Octave, an open-source 254 

implementation of MATLAB). Collectively, the described framework and SSM results of this study provide a basis 255 

for developing more standardized tools to evaluate LCPD deformity in 3D. Due to its compact but comprehensive 256 

description of morphology, this modeling framework provides opportunities for future SSM research to relate 257 

patient-specific morphology with biomechanics in affected and healthy participants, or to longitudinally quantify 258 

how LCPD hips remodel in modified Waldenstrom stage IV until skeletal maturity. 259 

In our small cohort of LCPD hips, the SSM framework produced a model with good evaluation results. A 260 

compactness of 87.5% with four modes demonstrates efficient representation of the cohort’s variability. A 261 

generalization below 1mm with four or more modes suggests that the model was robust when applied to unfamiliar 262 

data, and was not over-fit to the training set. The specificity curve of the model did not meaningfully change with 263 

the number of modes considered, which may be an artifact of the small size and heterogeneity of the training set. To 264 

calculate specificity, ShapeWorks generates shapes by assigning random normally distributed shape mode weights. 265 

However, no individual shape in our evaluation cohort is close to the average shape in the first mode (Figure 5). As 266 

a result, the point-to-point distance between the large number of shapes generated near the mean and the relatively 267 

distant “nearest” training set examples dominates the specificity calculation for all modes. The resultant specificity 268 

of 1.1mm suggests that the model could nonetheless effectively discriminate between shapes and shape categories.  269 

The accuracy of this evaluation model was better than other hip SSMs produced using larger training sets. For 270 

example, Ziaeipoor et al. reported a median generalization error of 1.1-4.6mm using a training set of 18 normal 271 

femurs, and Whitmarsh et al. reported a mean reconstruction error of 1.1mm using 12 modes with a training set of 272 

85 normal, osteopenic and osteoporotic femurs.[32, 33] In addition, our leave-N-out cross-validation analysis 273 

suggests that the framework’s performance is robust to changes in training set sample size. Collectively, these 274 

measures of SSM performance provide confidence in using the described framework to further study LCPD 275 

pathomorphology.  276 

Our results were broadly similar to studies by Chan et al., who produced an SSM that included some LCPD 277 

proximal femurs alongside those with slipped capital femoral epiphysis (SCFE) and no pathology.[17, 18] This 278 

previous model exhibited similar features in shape modes associated with LCPD when compared to the present 279 

study, including short and wide femoral necks and flattened heads as noted by Chan and colleagues. Similarity 280 

between the previous and present models was particularly notable in mode I, whereas subsequent modes differ with 281 

more characteristics of SCFE present in the previous model. We felt it was important to produce a new model using 282 

only LCPD proximal femurs to evaluate our SSM framework as it is unclear how much of the variation described by 283 

each mode can be attributed to LCPD as opposed to SCFE, particularly as LCPD proximal femurs made up only a 284 

small proportion (one ninth) of the whole cohort in the study by Chan and colleagues (NLCPD = 5, NSCFE = 19, Nhealthy 285 

= 21). 286 

Correlations between PCA component scores and standard radiographic measures were evaluated to interpret each 287 

significant mode of variation relative to existing clinical measures of deformity. In our evaluation cohort, NSA 288 

appeared to prominently change in modes 1 and 2 of the model (Figure 4). However, the correlation between mode I 289 
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principal component score and clinically measured NSA was weak compared to ATD, a closely related 290 

measurement (Figure 5). This may be caused by difficulty in measuring NSA in patients with short, wide femoral 291 

necks, asymmetric femoral anteversion,[34] and an unclear femoral head center. This example demonstrates a 292 

potential application of the framework: to evaluate radiographic measurements against a 3D baseline shape 293 

description, which has been explored and validated in previous studies of the proximal femur.[13, 16] Harris et al. 294 

(2013) applied a similar analysis to SSM of adult hips with cam FAI deformity,[13] and reported “moderate to 295 

weak” associations between key radiographic metrics and shape modes (up to ρ=0.403 for Mode 1 and alpha angle). 296 

The stronger associations (up to ρ=0.79) found in the present study demonstrate the large size of LCPD deformity 297 

compared to FAI. 298 

Representation of 3D pathomorphology in terms of continuous shape modes could improve the assessment of long-299 

term prognosis in the clinic. For example, in 2D SSM of adult hips, shape modes representing femoral neck length, 300 

femoral neck width, and head-neck offset are predictive of total hip replacement.[15] Similarly, individual modes or 301 

combinations of modes from SSM of LCPD deformity could predict the timing and severity of long-term outcomes 302 

and inform preventative management strategies. 303 

This study does have some considerations and limitations. First, we studied a small group of hips to evaluate the 304 

framework in a cohort representative of LCPD morphology, and to illustrate how the resulting models may be 305 

related to existing clinical measures. Readers should not draw clinical conclusions from these findings, and we have 306 

not performed hypothesis testing for that purpose. A full assessment of LCPD pathomorphology should include age 307 

groups at various stages of development, each consisting of patients with a representative range of disease severities. 308 

The influence of factors such as the modality of the source imaging, resolution, and contrast on the performance of 309 

the current framework should also be considered as part of future research. Second, the field of view of the 310 

retrospective MR images did not include the distal femur or full hemipelvis, without which the model cannot 311 

describe key features such as femoral version[34] or the pose-dependent relationship between the femoral head and 312 

acetabulum. Future work making use of this SSM framework should ensure that all relevant anatomy is included in 313 

the field of view, including both femurs to the knee joint and the full pelvis. Finally, the framework presented herein 314 

does not itself separate changes in shape due to pathology from changes due to normal growth, the latter being 315 

substantial in the population of interest. We believe that accurate representation of shape for the whole range of 316 

deformity severity and at all developmental stages of growth will allow for more detailed studies of the relationship 317 

between deformity and growth in future. Our framework report in this study is well placed to provide that shape 318 

representation.  319 

In summary, the methodological framework for SSM proposed in this study provides an accessible, compact and 320 

accurate representation of the 3D pathomorphology of LCPD. This expandable framework represents a step towards 321 

an objective standard for descripting 3D LCPD morphology, which could help researchers and clinicians better 322 

understand how pathomorphology affects long-term outcomes in patients. This understanding will facilitate the 323 

development of patient-specific treatment guidelines for residual proximal femoral deformity, particularly in patients 324 

who are at high risk of developing early-onset OA. 325 
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